The effect of numerical integration on the finite element approximation of linear functionals
نویسندگان
چکیده
In this paper, we have studied the effect of numerical integration on the Finite Element Method (FEM) based on piecewise polynomials of degree k, in the context of approximating linear functionals, which are also known as “quantities of interest”. We have obtained the optimal order of convergence, O(h2k), of the error in the computed functional, when the integrals in the stiffness matrix and the load vector are computed with a quadrature rule of algebraic precision 2k− 1. However, this result was obtained under an increased regularity assumption on the data, which is more than required to obtain the optimal order of convergence of the energy norm of the error in the finite element solution with quadrature. We have obtained a lower bound of the error in the computed functional for a particular problem, which indicates the necessity of the increased regularity requirement of the data. Numerical experiments have been presented indicating that over-integration may be necessary to accurately approximate the functional, when the data lack the increased regularity.
منابع مشابه
A novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملA Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 117 شماره
صفحات -
تاریخ انتشار 2011